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There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity
epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic
function. The past few years, in particular, have seen significant changes in the way that we classify
adipocytes and how we view adipose development and differentiation. We have new perspective
on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms
used by adipocytes to communicate with other tissues. Finally, there has been significant progress
in understanding how these relationships are altered during metabolic disease and how they might
be manipulated to restore metabolic health.
Introduction
Adipose tissue is a remarkably complex organ with profound

effects on physiology and pathophysiology, but it has not

always been viewed in this light. Until the late 1940s, adipose

tissue was characterized as a form of connective tissue that

happened to contain lipid droplets, without linking this fact to

the metabolism of the organism in any meaningful way

(Figure 1). This gradually began to change with the realization

that adipose tissue plays a major role in nutrient homeostasis,

serving as the site of calorie storage after feeding and as the

source of circulating free fatty acids during fasting. In the late

1980s to mid 1990s came the discovery of adipose-derived

serum factors like adipsin, TNF-a, and leptin. Suddenly, adi-

pose tissue had to be regarded as an endocrine organ at the

center of energy homeostasis. From this point forward, studies

on the developmental, functional, and pathophysiological

aspects of adipose tissue have expanded markedly. The

renewed interest in fat has occurred simultaneously with a

tremendous increase in global rates of obesity and type dia-

betes; this is not coincidence, of course. We have reached

the inflection point at which the global burden of suffering

due to overnutrition outpaces that due to undernutrition for

the first time in human history, with 1.7 billion people classified

as obese (Haslam and James, 2005). Given its central role in

energy and glucose homeostasis, interest in ‘‘solving’’ the

adipocyte has never been higher and shows no sign of abate-

ment.

This Review will focus on topics in adipose biology that

are evolving quickly and that shed light on areas of particular

importance in metabolic health and disease. Such an endeavor

can never be truly comprehensive, but our goal is to provide a

sense of the ‘‘state of the field’’ for readers both inside and out

of the adipose community.
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Functions of Fat
All eukaryotes from yeast to man are able to store calories in

the form of lipid droplets, but only vertebrates have specialized

cells that are recognizable as adipocytes (Ottaviani et al.,

2011). It is unclear whether the lipid-storing cells of lower organ-

isms, such as the Drosophila larval fat body or intestinal cells of

C. elegans, represent structures that are truly homologous to

adipocytes or whether they simply reflect convergent evolution

to solve the problems associated with storing potentially toxic

lipid molecules. At the molecular level, one can find orthologous

lipid storage genes performing similar functions in worms, flies,

and mammals, but there are also many exceptions (Young and

Zechner, 2013).

Because of the association with metabolic disease, not to

mention the cosmetic and psychological burden of excess

body fat, adipocytes are perhaps the most vilified nonmalignant

cell type in the body. Given that context, it has been easy to over-

look the many benefits provided by healthy adipose tissue.

Energy homeostasis and reproduction are arguably the two

most important biological functions of any organism, and adi-

pose tissue is inextricably entwined with both. The relationship

between adiposity and reproduction is quite complex, with fat

providing nutrients and hormonal signals that regulate the hypo-

thalamic-pituitary-gonadal axis in both males and females;

conversely, blocking reproduction increases adiposity in many

species (Michalakis et al., 2013).

Adipose tissue also has important mechanical properties,

serving to protect delicate organs (the eye, for example, is sur-

rounded by fat in a manner analogous to the way one might

pack a teacup in bubble wrap) and to cushion body parts

exposed to high levels of mechanical stress (the heel and toe

pads, for example, are filled with fat). Additionally, fat plays an

important role in streamlining aquatic mammals and in providing
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Figure 1. Interest in Adipose Biology Has Risen Over Time
Papers were identified in PubMed using the term ‘‘adipose’’ for each year from 1900 to 2012 and are expressed as total number of adipose papers (blue) and
adipose papers as a percentage of all papers (red). Important events in adipose biology research are indicated by publication date. We are now in themidst of the
second surge of interest in adipose biology in the last century.
insulation; the role of adipose tissue in the latter may be over-

blown, however, as arctic and tropical mammals display a similar

distribution of subcutaneous and visceral fat (Pond, 1992). Fatty

tissues are also used as displays for sexual selection, such as

the cheek pads of the male orangutan and (in some cultures)

the human female buttocks (Singleton, 2008).

By far, however, the most important function of adipose tissue

is as amaster regulator of energy balance and nutritional homeo-

stasis; how these critical processes are coordinated locally and

systemically by adipose tissue is a major theme of this Review.

Adipocytes Are Not All the Same: White, Brown, and
Beige
Traditionally, adipocytes have been divided into two types: uni-

locular white adipocytes make up the bulk of fatty tissue in

most animals, marbling our steaks and expanding around our

midsections. Brown adipocytes, on the other hand, are highly

specialized cells that dissipate stored chemical energy in the

form of heat. They do this through the actions of uncoupling pro-

tein-1 (UCP-1), a brown adipose tissue (BAT)-specific protein

located within the mitochondria, which are densely packed in

these cells. UCP-1 catalyzes a proton leak across the inner mito-

chondrial membrane, thus ‘‘uncoupling’’ fuel oxidation from ATP

synthesis. Although many models have been proposed to
explain how UCP-1 works, recent studies suggest that it acts

as a long-chain fatty acid/H+ symporter (Fedorenko et al.,

2012). Classic brown adipocytes cluster as specific depots

located in the interscapular and perirenal regions of rodents

and are richly innervated and vascularized (Bartness et al.,

2010b).

Evolutionarily, brown adipocytes appear in eutherian

(placental) mammals; all other vertebrates, including marsupials

and monotremes, possess only white fat (Hayward and Lisson,

1992). Interestingly, ‘‘protoendothermic’’ mammals, which

have body temperatures that track with ambient temperature,

also have brown adipose tissue, which enables them to maintain

endothermy selectively while pregnant and caring for their young

(Oelkrug et al., 2013). Human babies have significant brown fat

depots, presumably to provide heat in the cold environment

encountered at birth. Adult humans, however, were felt to be

largely devoid of brown fat unless specifically challenged by

chronic cold (as experienced by Scandinavian outdoor workers)

or by states of catecholaminergic excess (as seen in pheochro-

mocytoma) (English et al., 1973; Huttunen et al., 1981). The

existence of significant depots of genuine brown fat in adult

humans, however, was recently proven based upon radiological

observations of symmetrical [18F]-2-fluoro-D-2-deoxy-D-

glucose (FDG) positron emission tomography (PET)-positive
Cell 156, January 16, 2014 ª2014 Elsevier Inc. 21



Figure 2. Activators of Beige/Brown Fat

Development and Function
Many inducers of browning and enhanced ther-
mogenesis have been discovered. Some of these
agents appear to work primarily by inducing the
formation of new beige (e.g., irisin) or brown (e.g.,
BMP7) adipocytes, whereas others may act on
both recruitment and enhancement of thermo-
genic potential.
loci in the supraclavicular and spinal regions of patients getting

such scans for cancer diagnosis or staging. These regions

were subsequently proven by biopsy to contain bona fide

UCP-1+ adipose tissue consistent with brown fat (Cypess

et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al.,

2009).

In rodents, prolonged cold exposure or adrenergic signaling

can provoke the appearance of clusters of UCP-1+ cells with a

brown fat-like morphology within white fat depots. For decades,

these cells were poorly characterized and were simply called

brown adipocytes. Their abundance varies dramatically between

depots, with the highest numbers found in inguinal and retroper-

itoneal fat and much lower numbers seen in perigonadal fat.

There are also significant strain-specific differences in the

number of these cells, which correlates positively with resistance

to diet-induced obesity (Xue et al., 2007). These inducible cells

have been called ‘‘beige’’ or ‘‘brite’’ adipocytes and have an

overlapping but distinct gene expression pattern compared to

classic brown adipocytes. Both express a core program of ther-

mogenic and mitochondrial genes, including Ucp1, and murine

beige (but not classic brown) cells also express the surface

markers Cd137 and Tmem26 (Wu et al., 2012). Other genes,

likeZic1, appear tomark classic brown adipocytes, but not beige

cells (Waldén et al., 2012). Are the UCP-1+ cells in humans equiv-

alent to rodent brown adipocytes, or are they more similar to

beige cells? Several groups have tackled this issue and have

come to different conclusions based on the relative expression

of these and other marker genes. The interscapular brown fat
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of human infants shares extensive simi-

larity with classic brown fat in rodents

(Lidell et al., 2013). In adult humans, the

answer may depend on the specific

depot sampled, as cells with both brown

and beige attributes have been identified,

with the brown:beige ratio increasing as

one moves deeper within the neck and

back (Cypess et al., 2013; Jespersen

et al., 2013; Lidell et al., 2013; Sharp

et al., 2012; Wu et al., 2012).

We are still early in the process of

understanding the similarities and differ-

ences between brown and beige adipose

cells, and we do not yet have a clear pic-

ture of their relative importance in energy

homeostasis. Bioenergetic analysis of

BAT and WAT that has been rendered

more brown by exposure to a b-adren-

ergic compound suggest that both are
truly thermogenic, with a large fraction of their respiration un-

coupled. Comparing pure clonal brown and beige cells, it

appears that the classical brown fat cells have a higher basal

UCP1 expression and elevated uncoupled respiration (relative

to white or beige cells) before hormonal stimulation. Beige cells,

on the other hand, have low basal UCP1 expression and

uncoupled respiration, comparable to white cells. However,

stimulation with a b-adrenergic agonist elevates UCP1 to levels

seen in brown fat cells. This suggests that beige cells are

uniquely programmed to be bifunctional—suited for energy

storage in the absence of thermogenic stimuli but fully capable

of turning on heat production when appropriate signals are

received (Wu et al., 2012). Interestingly, selective loss of classic

brown fat (by ablation of the type IA BMP receptor) causes

compensatory induction of beige fat, restoring both body tem-

perature and resistance to diet-induced obesity, suggesting sig-

nificant overlap in function (Schulz et al., 2013).

One area of particularly rapid growth concerns the physiolog-

ical activators of thermogenesis in brown and beige cells

(Figure 2). The role of the sympathetic nervous system (SNS)

has been long appreciated here, with several hypothalamic

and extrahypothalamic areas serving as integrators of the cold

response (Chechi et al., 2013). The SNS does not exert a mono-

lithic response to central activation but, rather, distributes sig-

nals to white or brown adipose depots according to need so

that the effect of food deprivation on SNS input to adipose tissue

is qualitatively different than the effect of cold exposure (Brito

et al., 2008). Cold may also have effects on BAT function that



do not depend on SNS signaling. For example, white and beige

(but not brown) adipocytes can directly sense temperature. Mice

lacking all b-adrenergic receptors show diminished thermogenic

gene induction in interscapular BAT after cold exposure but still

demonstrate browning of white fat. This can be replicated by

placing white or beige cells at 30�C in vitro, an effect indepen-

dent of the traditional cAMP-CREB pathway (Ye et al., 2013).

The superficial location of subcutaneous white fat may be ideal

for it to serve as a thermal sensor, although the contribution of

this pathway to total energy expenditure is still unclear.

Numerous circulating hormones have been implicated in

BAT activation in addition to catecholamines, such as triiodothy-

ronine (T3), which is generated from serum thyroxine in large

quantities by deiodinase activity within brown and beige adipo-

cytes. Hepatic bile acids and FGF21 have also been shown to

enhance browning, as have cardiac hormones like atrial and

ventricular natriuretic peptides (ANP and BNP) and cardio-

trophin-1 (Villarroya and Vidal-Puig, 2013). Irisin, a hormone pro-

duced by skeletal muscle in response to exercise, is also a

potent inducer of browning (Boström et al., 2012). These agents

act through their respective receptors to induce browning by

various overlapping mechanisms. Bile acids, for example, acti-

vate the TGR5 receptor, which in turn induces the deiodionase

enzyme that promotes intracellular T3 formation (Watanabe

et al., 2006). Thyroid hormone and catecholamines both induce

the local formation of BMP8b, which sensitizes the brown adipo-

cyte to further adrenergic signaling. BMP8b also acts in the brain

to direct SNS signaling specifically to BAT (Whittle et al., 2012).

Various retinoids have also been implicated in brown adipocyte

activation, at least in part through direct transcriptional effects on

the Ucp1 gene (Alvarez et al., 1995; Kiefer et al., 2012).

The vast amount of information that has emerged in the

past few years on brown and beige fat physiology presents a

simple question: Why do so many things cause browning?

Browning in response to a thermal challenge seems obvious

enough, but why should it have evolved as a response to volume

overload of the heart or exercise? Perhaps the thermogenic

response to exercise is a ‘‘tag-along’’ effect, a by-product of

the ability to promote thermogenesis in response to nonsyn-

chronous muscle contraction (i.e., shivering) that was neither

selected for nor against.

Distinctions among White Fat Depots: Location,
Location, Location!
Adipose tissues develop in multiple discrete locations, with

larger accumulations recognized as specific depots. The most

common classification scheme distinguishes between subcu-

taneous and visceral fat, in large part because the latter depot

has a well-known association with metabolic disease, whereas

the former does not (or may even be inversely correlated with

disease risk) (Lee et al., 2013). In fact, the visceral versus subcu-

taneous scheme is oversimplified, as there appear to be clear

distinctions between nominally visceral depots like the perigona-

dal, mesenteric, and retroperitoneal fat pads, among others.

Importantly, many depots in humans have no precise correlates

in mice, and vice versa; for example, a large percentage of

visceral fat in humans is contained in the omentum, which is

barely present in rodents. Conversely, the large epididymal fat
pads of male mice, which are frequently sampled as representa-

tive of visceral fat, do not exist in men.

Regardless of these distinctions, there are clearly important

regional differences in such aspects of adipocyte behavior as

adipokine secretion and rates of lipolysis and triglyceride syn-

thesis (Tchkonia et al., 2013). Two hypotheses have been sug-

gested to explain this phenomenon: either (1) different depots

have unique innervation and specific relationships with the circu-

lation (for example, the venous drainage of visceral fat empties

into the portal circulation, thus bathing the liver in the by-prod-

ucts of fat metabolism and adipokines) or (2) cell-autonomous

mechanisms dictate depot-specific differences in adipocyte

physiology. These notions are not mutually exclusive, of course,

but significant evidence has emerged in support of cell-autono-

mous differences. For example, preadipocytes express gene

signatures that are specific for their depot of origin, and they

continue to behave distinctly even after isolation and prolonged

passage under identical conditions (Macotela et al., 2012;

Tchkonia et al., 2013). Transplantation studies have put this to

the direct test; placing visceral fat into a subcutaneous position

has very little effect, but transplanting subcutaneous fat to the

visceral compartment leads to reduced adiposity and improve-

ment in glucose homeostasis (Tran and Kahn, 2010). These

results indicate that there are intrinsic differences between

depots and also imply that subcutaneous fat may have beneficial

effects on metabolism.

Interestingly, many diseases that affect adipose tissue show

depot-specific effects. For example, glucocorticoid excess due

to either endogenous overproduction or pharmacological

therapy is associated with redistribution of fat to visceral stores

with relative wasting of subcutaneous fat. A similar pattern is

seen in the acquired lipodystrophy associated with certain HIV

treatment regimens. Congenital lipodystrophy can also preferen-

tially affect specific depots, with different patterns of fat loss

associated with distinct genetic lesions. Thus, although muta-

tions in BSCL2 cause loss of fat in all depots, mutations in

CAV1, AGPAT2, and PTRF are associated with the absence of

metabolically active depots, but not mechanical sites like the

palm, sole, and retro-orbital depots; patients with LMNA muta-

tions lose subcutaneous fat preferentially from the trunk and

extremities, but not the face and neck (Garg, 2011). The patho-

physiological mechanisms that account for these patterns

remain elusive.

The Developmental Origins of Adipose Tissue: A Bloody
Mess
The developmental timing of adipose tissue formation varies

somewhat between species. In rodents, white adipose tissue

appears largely after birth, although using sensitive reporters,

one can see expression of adipose-specific markers in the

subcutaneous region as early as embryonic days 16.5–17.5,

and lipid-filled subdermal adipocytes can be detected 1 day

after that (Birsoy et al., 2011; Greenwood and Hirsch, 1974).

Visceral fat develops later, becoming visible by postnatal day

7; committed precursor cells are not even found in the nascent

epididymal pad until postnatal day 4 (Han et al., 2011). Similarly,

zebrafish do not develop adipocytes or discernible precursor

cells until after the larval stage (Flynn et al., 2009). In humans,
Cell 156, January 16, 2014 ª2014 Elsevier Inc. 23



however, one sees obvious white fat development by the 14th

week of gestation, although the precise timing may depend to

some degree on fetal size, with larger fetuses developing identifi-

able adipocytes earlier than smaller ones (Poissonnet et al.,

1983, 1984). Proliferation tends to diminish late in gestation,

and adiposity increases primarily by filling of predetermined

cells until age 10 or so, followed by a period of increased cellu-

larity that lasts through adolescence. This period sets the total

number of adipocytes that the individual will have as an adult,

although new cells are constantly being created and destroyed

throughout life (Knittle et al., 1979). In humans, roughly 8% of

adipocytes are turned over approximately every year, whereas

in mice, 0.6% of adipocytes are renewed each day (Rigamonti

et al., 2011; Spalding et al., 2008).

From a cellular perspective, adipocytes develop from pre-

adipocytes, which themselves derive from precursor cells, which

carry a bewildering array of names in the burgeoning literature

(Cawthorn et al., 2012). In general, the so-called stromal-

vascular fraction (SVF) is separated from mature adipocytes by

collagenase digestion and low-speed centrifugation. When the

SVF is cultured ex vivo, blood cells, endothelial cells, and other

nonfibroblastic cells do not attach to the dish. What remains

can be almost completely differentiated using a hormonal cock-

tail that typically includes insulin, a glucocorticoid, a phosphodi-

esterase inhibitor, and often a PPARg agonist. This does not

allow, however, for identification of the specific cell type within

the SVF that populates the mature adipocyte fraction in vivo,

and this has spurred a number of studies involving selective

flow sorting using antibodies against various cell surface

markers. Most of these studies have shown that mesenchymal

and stem cell markers such as CD34 and Sca-1 strongly enrich

for adipogenic precursors (Cawthorn et al., 2012). Additional

insight was gained when CD45–;CD31–;Ter119–;CD29+;

CD34+;Sca-1+ cells were separated based on their CD24 status.

Both CD24+ andCD24– cells could be converted to adipocytes in

a dish, but only the former could reconstitute a functional fat pad

when transplanted into a lipodystrophic mouse, and only when

placed in an appropriate microenvironment (Rodeheffer et al.,

2008).

Adipocytes develop from mesenchyme, which is primarily of

mesodermal origin. In the cephalic region, however, mesen-

chyme derives from the neurectoderm, and thus adipocytes in

this part of the body are ectodermal (Billon et al., 2007). The

earliest recognizable structure that will become a fat pad is a

cluster of blood vessels originally called a ‘‘primitive organ’’;

these structures have been identified in creatures as diverse as

reptiles, chickens, mice, and humans (Wassermann, 1965).

This observation, when combined with ultrastructural data

suggesting tight apposition of the vasculature and the devel-

oping fat pad and other studies suggesting a functional link

between adipogenesis and angiogenesis (Cinti et al., 1984;

Fukumura et al., 2003), led to suspicions that adipocytes might

derive from cells associated with blood vessels. Several line-

age-tracing experiments have strongly supported this idea. For

example, early adipose progenitors within the fat pads of young

mice express PPARg; these cells are physically associated with

the walls of intra-adipose blood vessels. PDGFRbmarks cells of

the mural compartment of the blood vessel, and can be used to
24 Cell 156, January 16, 2014 ª2014 Elsevier Inc.
enrich for cells with adipogenic potential. In these studies, all

adipose progenitors were marked with PDGFRb, but not all

PDGFRb+ cells had adipogenic potential (Tang et al., 2008). In

another study, cells were fluorescently labeled using a Zfp423

driver, a critical transcriptional regulator in adipose lineage

commitment. These cells, which have high potential for adipo-

genic conversion, are also contained within the perivascular

compartment (Gupta et al., 2012). Interestingly, this study further

suggested that a subpopulation of endothelial cells might also

give rise to adipocytes, a notion supported by a separate line-

age-tracing study using Cre recombinase driven by the VE-

cadherin promoter (Tran et al., 2012). It should be pointed out,

however, that knocking out PPARg with a different endothelial

Cre line (Tie2-Cre) does not affect adipose development or

PPARg expression within adipocytes (Kanda et al., 2009). Simi-

larly, a recent lineage-tracing study failed to detect an adipose

progenitor population located within either the endothelial or

perivascular compartments; instead, this study identified a com-

mon PDGFRa+ precursor for all white adipocytes that was

distinct from PDGFRa+ cells found within the vessel wall (Berry

and Rodeheffer, 2013).

It has been proposed that some adipocytes derive from

hematopoietic precursors. This notion was originally suggested

60 years ago (McCullough, 1944) and has regained currency

through the use of sophisticated imaging and bone marrow

transfer techniques (Majka et al., 2010). Others, however, have

failed to confirm these results (Berry and Rodeheffer, 2013;

Koh et al., 2007), and though we cannot rule out the possibility

that some adipocytes may derive from hematopoietic origins, it

appears that this is not a major pathway for adipocyte develop-

ment.

Brown fat has a different developmental pattern than white fat.

So-called altricial mammals, which have a short gestation period

and are born with an immature hypothalamic-pituitary-adrenal

(HPA) axis (e.g., mice and rats), stay warm in the extrauterine

environment by huddling in the nest and not by using nonshiver-

ing thermogenesis. Thus, although interscapular BAT can be

identified during rodent embryogenesis, it does not express

significant amounts of UCP-1 until it matures during the post-

natal period. In contrast, precocial mammals have a long gesta-

tion; such species, which include sheep and humans, are able to

rapidly switch on nonshivering thermogenesis at birth. UCP-1

expression peaks at birth and then slowly diminishes as brown

adipocytes are replaced by white fat cells (Symonds, 2013).

For quite some time, it was assumed that brown and white

adipocytes share a common precursor—a reasonable con-

clusion, given the numerous similarities between the two cell

types. Surprisingly, however, data obtained over the last few

years have shown unambiguously that muscle and classical

brown fat derive from the same or very similar precursors. This

notion took flight with the identification of the transcriptional

cofactor PRD1-BF-1-RIZ1 homologous domain-containing

protein-16 (PRDM16) as a dominant regulator of the brown fat

program (Seale et al., 2007). When PRDM16 is knocked down

in primary brown fat cultures, a phenotypic switch to skeletal

muscle is seen, while expression of PRDM16 in myoblasts

switches them to brown fat (Seale et al., 2008). Additionally,

lineage-tracing studies using the muscle-selective Myf5-Cre



Figure 3. Different Origins for Distinct

Types of Adipocyte
White and beige adipocytes derive from Pax7–/
Myf5– cells via distinct precursor cells. Beige adi-
pocytes differentiate following activation by cold
or other inducers. After cold challenge is removed,
these cells become inactive, taking on the
morphology of a ‘‘white’’ adipocyte. Classic brown
fat, in contrast, comes from a Pax7+/Myf5+ lineage
shared with skeletal muscle.
showed that skeletal muscle and classical brown fat share a

common precursor (Seale et al., 2008), with the divergence

occurring between days 9.5 and 12.5 of mouse gestation (Lep-

per and Fan, 2010). These findings helped to explain gene

expression studies showing that brown preadipocytes express

some myogenic genes not seen in white preadipocytes (Tim-

mons et al., 2007). It should be noted that one study has

concluded that Myf5+ precursors give rise to some white adipo-

cytes (Sanchez-Gurmaches et al., 2012); generally speaking,

however, most evidence suggests that white and brown adipo-

cytes take different developmental paths (Figure 3).

Beige adipocytes do not derive from the same Pax7+Myf5+

precursor cells that give rise to classic interscapular BAT (Seale

et al., 2008); indeed, this is the major evidence that these are

distinct cell types. Two major theories have been proposed for

the origin of these cells. One school of thought holds that these

cells derive from transdifferentiation of existing mature white

adipocytes. This idea emerges from observations that cold

exposure or treatment with a b3 agonist does not induce cellular

proliferation in the newly browned fat pad. Furthermore, cells

with the morphological appearance of a transition form between

white and brown fat can be identified (Himms-Hagen et al., 2000;

Vitali et al., 2012). Others, however, have proposed that beige

adipocytes derive from unique precursor cells within the white

fat pad; such cells can, in fact, be identified using sorting and/

or cloning by limiting dilution (Lee et al., 2012; Schulz et al.,

2011; Vegiopoulos et al., 2010; Wu et al., 2012). Two genetic-

tracing studies have shed light on this issue. In one, the appear-

ance of beige adipocytes upon cold exposure was shown to

require new adipogenesis (Wang et al., 2013). The second study

used different markers to demonstrate that the beige adipocytes

appearing in response to an initial period of cold exposure take

on the morphology and gene expression pattern of a typical

white adipocyte after reintroduction to warm conditions (Rose-
Cell 15
nwald et al., 2013). Furthermore, upon

placement in the cold for a second time,

many of these cells reinduce the thermo-

genic program. One may thus postulate a

unifying model in which a dedicated

precursor cell differentiates into a beige

adipocyte (without a requirement for pro-

liferation) when conditions require it to do

so, followed by conversion back to an

energy-storing ‘‘white’’ adipocyte when

heat generation is no longer a priority.

This subpopulation of white adipocytes

then forms a pool of potentially thermo-
genic cells that can be called upon if environmental conditions

change. It should be noted that this is not the first example of

such malleability in adipose biology; mammary adipocytes of

virgin female mice are converted to secretory epithelial cells

during pregnancy and lactation, followed by reconversion to

adipocytes during mammary involution (Morroni et al., 2004).

Collectively, these studies demonstrate that certain adipose

populations show extraordinary plasticity when physiological

conditions change.

We are now in a period during which new information on the

developmental origins of adipose tissue is being accumulated

rapidly. At present, it is difficult to reconcile all of the published

data into a coherent framework. Some of this is certainly due

to experimental variability, with questions arising about the

fidelity of different transgenic Cre lines and the specificity of

antibodies used for sorting and staining, among other technical

issues. We believe, however, that there is likely a strong compo-

nent of natural variability, with different depots and different

mouse strains displaying heterogeneity that underlies the

extraordinary plasticity of this cell type.

Additional Developments in Adipocyte Development:
Epigenomic and Transcriptional Clues
At the cellular level, adipogenesis can be thought of as occurring

in two phases: determination and terminal differentiation. During

determination, possible alternate fates of an adipose precursor

cell become progressively restricted such that it becomes

‘‘committed’’ to the adipose lineage and becomes a preadipo-

cyte. Terminal differentiation, on the other hand, describes the

process by which the preadipocyte acquires the characteristics

of the mature adipocyte. Because most of the cellular models

that have been employed to study adipogenesis are already

committed to the adipose lineage (e.g., 3T3-L1, 3T3-F442A),

we knowmuchmore about the process of terminal differentiation
6, January 16, 2014 ª2014 Elsevier Inc. 25



than we do about determination. Furthermore, we know very

little about mechanisms of adipogenesis in vivo, as the means

of studying this are mostly indirect.

Several well-studied signaling pathways help to direct multi-

potent cells to decide between adipogenic and nonadipogenic

fates. Most of these studies have been performed using bone-

marrow-derived mesenchymal cells, and thus the ‘‘bone-fat

switch’’ is the most commonly described fate choice. The Wnt

and hedgehog pathways, for example, tend to promote osteo-

genesis and inhibit adipogenesis in both committed and uncom-

mitted precursor cells (Rosen and MacDougald, 2006). These

pathways utilize different signaling intermediates, but both

have been reported to converge on the transcription factor

COUP-TFII, which inhibits proadipogenic transcription factors

like PPARg and C/EBPa (Okamura et al., 2009; Xu et al., 2008).

Interestingly, noncanonical signaling viaWnt5b tends to promote

adipogenesis, at least in part by blocking b-catenin-mediated

signals from classic Wnt signals (Kanazawa et al., 2005).

Conversely, IGF/insulin signaling is strongly proadipogenic

(Garten et al., 2012). For many other pathways, it has been diffi-

cult to draw general conclusions because results depend on the

specific ligand, cell type, stage of differentiation, or other exper-

imental conditions. The TGFb/BMP superfamily provides an

instructive example. TGFb and its downstream effector Smad3

have been shown to exert both pro- and anti-adipogenic actions

in different in vitro and ex vivo models (Choy et al., 2000; Yadav

et al., 2011). Among the BMPs, BMP2 and BMP4 have been

shown to increase both osteogenesis and adipogenesis, de-

pending upon other components of the differentiation cocktail,

whereas BMP7 promotes brown adipogenesis specifically

(Zamani and Brown, 2011). Still other members of the superfam-

ily, like the activins, have also been reported to have disparate

effects on adipogenesis and adiposity (Dani, 2013). Similarly,

the fibroblast growth factor (FGF) and Notch-signaling pathways

have been reported to have complex effects on adipogenesis

(Rosen and MacDougald, 2006).

The transcriptional cascade that promotes adipogenesis has

also been studied at length, and again, the most detailed infor-

mation concerns the factors and pathways that promote and

repress terminal differentiation. The ‘‘master regulator’’ of fat

cell formation is PPARg, as it is both necessary and sufficient

for adipogenesis; PPARg is so potent an adipogenic factor that

it can drive nonadipogenic cells like fibroblasts and myoblasts

to become adipocytes (Hu et al., 1995; Tontonoz et al., 1994).

Consistent with murine studies, humans with rare loss-of-func-

tion mutations in PPARg have lipodystrophy and severe insulin

resistance. The bZIP factors C/EBPa, C/EBPb, and C/EBPd

are also important inducers of adipogenesis, with C/EBPb and

d acting early in terminal differentiation. Differentiation is ‘‘locked

in’’ by a positive feedback loop between PPARg and C/EBPa

(Rosen et al., 2002; Wu et al., 1999); a second positive feedback

loop between PPARg and C/EBPb reinforces the decision to

differentiate (Park et al., 2012). Many of these factors bind at

common genomic ‘‘hot ‘‘spots,’’ with early factors establishing

chromatin accessibility at the same locations that will later be

bound by downstream factors (Siersbaek et al., 2012). In the

years since this core pathway was uncovered, many other tran-

scription factors have been identified that promote or inhibit adi-
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pogenesis; most of these exert their actions at least in part by

inducing or repressing expression of PPARg (Cristancho and

Lazar, 2011; Rosen and MacDougald, 2006). PPARg, in turn,

directly binds to and regulates a huge number of genes that

control virtually all aspects of adipocyte metabolism. Interest-

ingly, genome-wide localization analysis shows that a surpris-

ingly low number of PPARg-binding sites are conserved

between mouse and human; the specific genes and gene sets

that are regulated by PPARg, however, are highly concordant

(Mikkelsen et al., 2010; Schmidt et al., 2011; Soccio et al., 2011).

There has been recent progress in identifying transcription

factors involved in adipose determination. An expression screen

in embryonic fibroblasts with and without adipogenic potential

identified Zfp423 as a transcriptional determinant of the adipose

lineage (Gupta et al., 2010). Zfp423 induces adipose lineage

commitment by amplifying the effects of BMPs via a SMAD-

interaction domain. Zfp423 expression in the developing adi-

pocyte is repressed by the highly related factor Zfp521, which

promotes osteogenesis and inhibits adipogenesis through inter-

actions with Ebf1, another transcription factor required for early

adipose commitment (Festa et al., 2011; Kang et al., 2012).

Tcf7l1 also regulates adipogenic lineage commitment, although

it acts in a very differentmanner by responding to confluency and

mediating changes in structural proteins that regulate differenti-

ation (Cristancho et al., 2011).

The core elements of the adipogenic transcriptional cascade

appear to be shared by most adipose depots, although details

can differ. For example, mice lacking C/EBPa are generally

lipodystrophic but still have mammary fat and brown adipose

tissue (Linhart et al., 2001). Similarly, animals lacking Ebf1 are

lipodystrophic except in the bone marrow, where the adipocytes

are quite hypertrophic (Hesslein et al., 2009). How these special-

ized depots compensate for the loss of these otherwise critical

factors is unknown but may involve the selective use of related

transcription factors like C/EBPb and Ebf2. Ebf2 seems to be

particularly important for brown fat development, as it recruits

PPARg to unique sites that determine brown adipocyte identity

(Rajakumari et al., 2013).

Interestingly, much of the specialized function of brown adi-

pocytes is controlled by transcriptional cofactors, which do not

bind DNA directly but which determine which targets are bound

and activated by transcription factors. The best-studied of these

is PGC-1a, which is a dominant regulator of mitochondrial

biogenesis, oxidative metabolism, and thermogenesis in brown

fat (Puigserver and Spiegelman, 2003). PGC-1a exerts its

actions on mitochondria and oxidation via interactions with tran-

scription factors like ERRa, Nrf-2, PPARa, and PPARg (Giguère,

2008; Puigserver and Spiegelman, 2003); the transcription factor

partners of PGC-1a that control thermogenesis are still un-

known. Interestingly, though ablation of PGC-1a reduces the

expression of many thermogenic genes, other brown fat-selec-

tive genes remain unaffected. This suggests that other factors

might also be important in brown fat identity, which led to the

identification of PRDM16, another coregulator (Seale et al.,

2007). PRDM16 binds C/EBPb (and presumably other transcrip-

tion factors) and recruits the corepressor proteins CtBP1 and

CtBP2 to prevent gene expression associated with either white

fat or muscle (Kajimura et al., 2009; Kajimura et al., 2008). Other



cofactors, such as RIP140, SRC-1/2/3, TRIP-Br2, and the

pocket proteins pRb and p107, also exert important effects on

brown fat development and function (Liew et al., 2013; Seale

et al., 2009). TLE3 is a particularly interesting cofactor in that it

competes with PRDM16 for PPARg binding, blocking thermo-

genesis in favor of genesmore indicative of white adipose tissue.

Animals that overexpress TLE3 in fat display impaired brown fat

function, while adipose-specific knockouts have the opposite

phenotype (Villanueva et al., 2013).

Finally, there has been significant attention paid to the role

of noncoding RNAs in adipose differentiation. MicroRNA

(miRNA) in particular has been studied in this regard; at least

20miRNA species have now been shown to affect adipogenesis,

though some are not specific for fat and appear to be required for

mesenchymal cell differentiation generally (Oskowitz et al.,

2008). SomemiRNAs affecting adipogenesis target transcription

factors like PPARg and C/EBPa directly, whereas others regu-

late important signaling pathways like insulin-Akt, TGFb, and

Wnt (Chen et al., 2013b). Other miRNAs have a preferential effect

on brown and/or beige adipocyte formation and function,

including some that target PRDM16 and C/EBPb (Trajkovski

and Lodish, 2013). Several long noncoding RNAs (lncRNAs)

have also been shown to be regulated by PPARg and C/EBPa

and to affect to adipocyte differentiation (Sun et al., 2013b),

though the mechanisms must still be worked out.

Adipose Tissue Expansion in Obesity: Go Big versus Go
Forth and Multiply!
One of the unique attributes of adipose tissue is its incredible

capacity to change its dimensions; no other nonneoplastic tissue

shares this feature to the same degree. In principle, this can be

accomplished by increasing the size of individual cells (hyper-

trophy) or by recruiting new adipocytes from the resident pool

of progenitors (hyperplasia). In the face of overnutrition, adipose

depots expand first by hypertrophy until a critical threshold is

reached (�0.7–0.8 ug/cell), upon which signals are released

that induce the proliferation and/or differentiation of preadipo-

cytes (Krotkiewski et al., 1983). In humans, overfeeding for

several months causes increases in cell size but not cell number

(Salans et al., 1971); a more recent version of this study suggests

that overnutrition induces hypertrophy in upper-body sub-

cutaneous fat but hyperplasia in depots below the waist (Tchou-

kalova et al., 2010). More recently, stable isotope labeling from

midcentury nuclear weapons testing was exploited to suggest

that adipocyte number becomes fixed during childhood and

early adulthood, with obese people achieving a higher ‘‘plateau’’

(Spalding et al., 2008).

Interestingly, once adipocytes are gained, they are hard to

lose, as even significant weight loss is associated with a reduc-

tion in adipocyte volume, but not overall number (Björntorp

et al., 1975; Kral et al., 1977). This is not to say that adipocytes

never die, as �8% of human subcutaneous adipocytes turn

over each year, with birth and death rates matched to result in

little change in total cell number (Spalding et al., 2008). Adipo-

cytes may die via necrosis or apoptosis, although the relative

contribution of each process is debated (Cinti et al., 2005). Ro-

dent studies suggest that there is a sharp, depot-specific in-

crease in the death rate of adipocytes in obesity, with up to
80% of epididymal adipocytes dying after a few months of

high-fat feeding, while only 3% of inguinal adipocytes met the

same fate (Strissel et al., 2007). This is matched by high prolif-

eration and differentiation rates so that overall fat mass con-

tinues to increase as obesity progresses. This adds a layer of

complexity to the model discussed above, such that hypertro-

phy is followed by cell death and, finally, by the appearance

of new adipocytes. This notion is supported by serial analysis

of individual Zucker fatty rats, which appear to cycle between

hypertrophy and hyperplasia as obesity progresses (MacKellar

et al., 2010). Other recent data also support a role for both

hyperplasia and hypertrophy upon high-fat feeding (Wang

et al., 2013). Macrophages play an integral role in this process,

with a possible role for both M1 and M2 subtypes (Strissel et al.,

2007).

The observation that obesity can be associatedwith adipocyte

hyperplasia, in rodents at least, has contributed to a popular

though false notion: that adipogenesis per se can cause obesity.

This idea has been bolstered by data showing that manipulation

of many genes can cause obesity in vivo while also causing

increased adipogenesis when tested in vitro. It is important to

remember, however, that increased adipogenesis is not the

primary driver of obesity in these models. The energy balance

equation tells us that overnutrition (or reduced energy expendi-

ture) is the culprit and that the increase in adipogenesis is driven

by the need to store excess calories. Sensibly, the same molec-

ular effectors that provoke increased food intake or reduced

energy expenditure also promote the formation of new cells

adapted to handling the increased calories safely.

Adipose Tissue Remodeling during Obesity: Are We Too
Fat or Not Fat Enough?
The ability of the adipose depot to change its size dramatically in

response to nutritional demands requires a unique capacity to

remodel, the mechanisms of which are now being elucidated.

Significant attention has focused on the role of hypoxia, with

numerous parallels being drawn to tumor biology, another

example of a tissue that expands rapidly. As with cancer, adi-

pose tissue has the potential to outgrow its blood supply. The

ability of adipose tissue to promote its own vascularization and

the possibility of exploiting this as a metabolic therapy are dis-

cussed in greater detail below. Despite efforts to recruit new

blood vessels during adipose tissue expansion, however, hypox-

ia may develop, though some studies have shown normal or

even elevated oxygen tension in fat pads of obese subjects

(Trayhurn, 2013). These discrepancies may be based on tech-

nical variables and the difficulty of measuring oxygen tension

in living tissues. Nonetheless, the oxygen-sensitive transcription

factor HIF-1a does become activated in obese adipocytes

(Krishnan et al., 2012). Overexpression of HIF-1a in adipose

tissue in vivo causes metabolic dysfunction, whereas adipose-

selective ablation of HIF-1a has the opposite effect (Sun et al.,

2013a). Several mechanisms have been postulated to account

for the actions of HIF-1a, including suppression of b-oxidation

via transcriptional repression of Sirt1, which deacetylates (and

thus activates) PGC-1a (Krishnan et al., 2012); reduction of adi-

ponectin (Jiang et al., 2013); and promotion of fibrosis and

inflammation (Halberg et al., 2009).
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Figure 4. Adipocyte-Matrix Interactions

Play a Role in the Pathology of Obesity
Adipocytes secrete numerous matrix proteins that
maintain the structure of the depot. During over-
nutrition, adipocytes increase in size until further
expansion becomes limited by the matrix, which
undergoes fibrotic changes. This triggers changes
that include hypoxia, inflammation, and cell death,
all of which contribute to insulin resistance.
Fibrosis is an additional key element in determining the health

of the fat pad (Figure 4). Adipocytes can be likened to ‘‘grapes in

a mesh bag,’’ with elements of the extracellular matrix serving as

the mesh. Fat cells express a wide variety of matrix proteins as

well as the enzymes required to break them down, and the

expression of these genes is highly regulated by changes in

nutrient availability (Maquoi et al., 2002). Current thinking holds

that relaxation of the matrix allows healthy expansion of the fat

pad; if the matrix is too rigid, then adipocytes become limited

in their ability to store excess nutrients, and this leads to patho-

logical features that include activation of stress-related path-

ways, inflammation, and ectopic lipid deposition in other tissues

(Sun et al., 2013a). Collagen VI, for example, is the predominant

form of collagen produced by adipocytes. When the Col6a1

gene is disrupted in leptin-deficient ob mice, they develop

much larger adipocytes than wild-type littermates (but smaller

fat pads overall, for unclear reasons), coupled with reduced

inflammation and improved glycemic and lipid parameters

(Khan et al., 2009). More recently, fibroblast growth factor 1

(FGF1) was shown to be a critical mediator of adipose remodel-

ing, such that Fgf1�/� mice display dramatically altered adipose

morphology upon chronic overfeeding or fasting, accompanied

by insulin resistance and dysglycemia (Jonker et al., 2012).

The Col6a1-deficient model and others with similar features

have been likened to a subgroup of human subjects called the

‘‘metabolically healthy obese’’ (MHO). These individuals tend

to have reduced visceral adiposity, increased adiponectin levels,

reduced fibrosis and inflammation, and improved glucose and

lipid homeostasis relative to other equally obese subjects (Denis

and Obin, 2013). Importantly, however, the humanMHO popula-

tion tends to have smaller adipocytes than other obese people

(Klöting et al., 2010), suggesting that increased expansibility

may not account for the improved metabolic profile of these

patients. An alternative hypothesis is that increased adipogene-

sis, resulting in numerous, smaller adipocytes with excellent
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glucose uptake and a healthy adipokine

profile, may account for the improved

metabolic health of some obese patients.

This is consistent with other lines of evi-

dence demonstrating that thiazolidine-

dione treatment improves metabolic

parameters despite increasing adipocyte

cell number and total adiposity (Tang

et al., 2011; Yamauchi et al., 2001), as

well as findings that metabolically un-

healthy obese patients have a diminished

preadipocyte pool (Gustafson et al.,

2013). Whether increased expansibility
or increased adipogenesis accounts for the phenotype of the

MHO individual, it certainly raises the paradox that the health

of the obese population might be improved if we made them

even more obese. We do not, however, expect that this will

become a high priority for the pharmaceutical industry.

Adipocyte-Immune Cell Interactions: Come Over to My
Pad!
In addition to a matrix of extracellular proteins, adipocytes

are surrounded by a wide variety of cells that includes endo-

thelium, immune cells, fibroblasts, preadipocytes, and stem

cells. Overall, mature lipid-laden adipocytes are believed to

make up only 20%–40% or so of the cellular content of a fat

pad (although they account for >90% of fat pad volume); every

gram of adipose tissue contains 1–2 million adipocytes but 4–6

million stromal-vascular cells, of which more than half are leuko-

cytes (Kanneganti and Dixit, 2012). Immune cells have been

known to populate the fat pad for decades (Hellman et al.,

1963), but it was not clear until recently that these cells play a

central role in adipose biology (Figure 5). This realization began

with the observation that adipose tissue is an important source

of TNF-a and other cytokines, an effect magnified by overnutri-

tion (Hotamisligil et al., 1993). These proinflammatory cytokines

significantly impair the insulin sensitivity of local adipocytes and

also liver and muscle. Later work showed that many of these

cytokines are produced by macrophages within the fat pad

rather than the adipocytes themselves (Weisberg et al., 2003;

Xu et al., 2003). These macrophages can be observed histolog-

ically as ‘‘crown-like structures’’ surrounding adipocytes, partic-

ularly in obese visceral fat; their uneven distribution has been

attributed to clustering around dead or dying adipocytes (Cinti

et al., 2005). Phenotypically, macrophages exist along a

spectrum, the poles of which have been designated M1 (or

‘‘classically activated’’) and M2 (or ‘‘alternatively activated’’).

M1 macrophages have a proinflammatory phenotype; they



Figure 5. Immune Cells Are Integral Com-

ponents of the Fat Pad in Leanness and

Obesity
The lean fat depot contains many types of immune
cells, dominated by resident M2 macrophages,
eosinophils, and Tregs. In the setting of over-
nutrition, there is accumulation of proinflammatory
cells, including M1 macrophages, mast cells, and
various T lymphocyte classes.
express the surface marker CD11c and cytokines like TNF-a,

IL-6, and IL-1b in response to LPS and IFN-g. M2 macrophages,

on the other hand, express the surface markers CD206 and

CD301; they play a role in tissue remodeling and wound healing

and respond to IL-4 and IL-13 by secreting anti-inflammatory

cytokines like IL-10 and IL-1 receptor antagonist. In lean animals,

M2 macrophages dominate the adipose tissue resident popula-

tion. As obesity progresses, however, more M1 macrophages

infiltrate the fat pad, causing insulin resistance (Oh et al.,

2012). It is worth noting that adipose M2 macrophage numbers

do not diminish in obesity and, in fact, may increase; but there

is a major shift in the M1/M2 ratio favoring a proinflammatory

state (Lumeng et al., 2007a, 2007b).

Other innate and adaptive immune cells also play a significant

role in setting the inflammatory tone of the obese fat pad; in fact,

virtually all known classes of immune cell have been implicated

in this process. Neutrophils, mast cells, B lymphocytes, and

various classes of T lymphocyte (e.g., CD8+ and CD4+ Th1 cells)

all increase in abundance in the obese fat pad, and all exert

negative effects on insulin sensitivity (Mathis, 2013). Conversely,

eosinophils and innate lymphoid (ILC2) cells act to reduce

inflammation and thus restore insulin sensitivity (Molofsky

et al., 2013; Wu et al., 2011). Regulatory T cells (Tregs) are

CD4+Foxp3+ immune cells that play a key role in controlling other

immune cells, including macrophages. Tregs are enriched in

normal rodent visceral fat but are strongly decreased upon the

development of obesity (Feuerer et al., 2009). Furthermore,

experimental depletion of adipose Tregs promotes insulin resis-

tance, with enhancement of Treg numbers showing the opposite

effect; these attributes are not shared by lymphoid Tregs (Eller

et al., 2011; Ilan et al., 2010). The special properties of Tregs

from visceral adipose tissue are due to the fact that they express

PPARg (Cipolletta et al., 2012). Interestingly, M2 macrophages

also express PPARg (Odegaard et al., 2007), aligning nicely

with long-time reports that PPARg can promote insulin sensi-
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tivity through multiple tissues (Tontonoz

and Spiegelman, 2008). NKT cells have

also been implicated in insulin resistance

and intra-adipose inflammation, but the

data from different groups are highly

contradictory (Mathis, 2013). In fact,

caution must be used in interpreting

much of the literature on adipose-

immune cell interactions, as many exper-

imental manipulations affect more than

one cell type. Furthermore, some ap-

proaches affect body weight, which
could imply primary actions in other tissues (e.g., the gut or brain)

that secondarily affect adipose function.

The precise temporal sequence of inflammatory cell infiltration

into adipose tissue is still unclear. Similarly, we do not fully

understand the full range and interconnectedness of the initiating

events that link overnutrition to inflammation. Adipocyte ‘‘stress’’

due to overnutrition has been linked to oxidative stress, endo-

plasmic reticulum stress, and Toll-like receptor activation due

to fatty acids and/or lipopolysaccharide (LPS), which may be

elevated in the serum of obese subjects (Cani et al., 2007; Hota-

misligil, 2010; Houstis et al., 2006; Shi et al., 2006). Ultimately,

these insults cause upregulation of various chemokines in adipo-

cytes, which recruit immune cells to the fat pad. These chemo-

kines include MCP-1, Ccl5, and others (Ota, 2013). Two recent

studies suggest that adipocytes may act as the antigen-present-

ing cells (APCs) that activate resident T cells shortly after the initi-

ation of high-fat diet (Deng et al., 2013; Huh et al., 2013), though

others suggest that adipose tissuemacrophages are the relevant

APCs (Morris et al., 2013). Notably, the specific antigens that

signal the overnourished state and trigger T cell activation are

still undefined.

Classic inflammation is characterized by rubor (redness),

tumor (swelling), dolor (pain), and calor (heat). Clearly, when

we overeat or become overweight, our adipose tissue does not

become hot and painful like an inflamed wound or an arthritic

joint. It is not entirely clear how inflammation is regulated during

overnutrition so that a chronic, low-grade state of immune cell

activation and cytokine elaboration is maintained without

causing the full-blown spectrum seen in other inflamed condi-

tions. Some of this may involve the numbers and types of

immune cells that inhabit the obese fat pad. For example, M2

macrophages likely keep their M1 counterparts in check in the

obese fat pad; loss of the transcription factor IRF4, required for

M2 polarization and function, causes worsened inflammation

and insulin resistance in the setting of high-fat feeding (Eguchi
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Figure 6. Adipose Crosstalk with Other

Tissues
Adipocytes store and release calories to the body
generally, but numerous examples have emerged
that demonstrate additional roles of fat in a wide
array of biological processes. These examples
given here are illustrative and not exhaustive.
et al., 2013). Treg cells are another cell type that is likely to play

a ‘‘braking’’ function on inflammation in obesity. Endogenous

pathways within the adipocyte and/or adipose-resident immune

cells may also play a role, as has been suggested for the trans-

membrane protein STAMP2, which is induced by feeding and

obesity in adipocytes and which suppresses cytokine synthesis

and metabolic dysfunction (Wellen et al., 2007).

Finally, one should not assume that the sole role of immune

cells in adipose tissue is to cause trouble in the context of

obesity. During fasting and weight loss, macrophages become

recruited to the fat pad by the products of lipolysis, where they

are responsible for taking up the newly available lipids (Granne-

man et al., 2005; Kosteli et al., 2010). This buffers the animal and,

specifically, the local adiposemicroenvironment from the effects

of high levels of free fatty acids. Another intriguing example of

adipose-macrophage crosstalk is the newly discovered role of

M2 macrophages to promote browning of white adipose tissue.

Cold exposure was found to polarize macrophages toward the

alternatively activated form in an IL-4-dependent manner, lead-

ing to the formation and secretion of catecholamines (Nguyen

et al., 2011).
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Adipose Crosstalk with Other Cell
Types
In addition to immune-adipose crosstalk,

there is a burgeoning awareness that

adipocytes exert a profound influence

on neighboring cells and tissues; this

appears to be particularly true for some

of the smaller and less well-known de-

pots (Figure 6). For example, adipogene-

sis within the dermis waxes and wanes in

concert with the hair cycle. Furthermore,

adipocyte progenitor cells (defined as

Lin–/ CD34+/CD29+/Sca1+) promote hair

growth in mice through the elaboration

of platelet-derived growth factor a

(PDGFa), which induces stem cell activa-

tion in the hair follicle (Festa et al., 2011).

Subsequent studies have delineated a

role for dermal adipocytes in wound heal-

ing, although the mechanism is still un-

clear (Schmidt and Horsley, 2013).

Another oft-overlooked depot is the

epicardial fat pad, which may have an

outsized effect on cardiomyocyte func-

tion and the risk of coronary atheroscle-

rosis despite representing a relatively

small fraction of overall visceral fat.

Several studies have identified an
anatomic relationship between the specific segments of the

coronary vasculature that are prone to plaque formation and

the presence of epicardial fat (Cherian et al., 2012).

Adipocytes and skeletal muscle are intertwined in several

interesting ways. Both derive from mesenchymal cells, and, as

described earlier, there is a shared lineage between skeletal

muscle and brown fat through a Myf5+ precursor. Inducible

brown precursor cells can be isolated from muscle, and muscle

and brown fat share overlapping gene expression patterns

(Schulz et al., 2011; Timmons et al., 2007). Interestingly, muscle

contains numerous so-called ‘‘fibro-adipogenic precursor’’

(FAP) cells that can differentiate into white adipocytes under

certain conditions, such as in muscular dystrophy, obesity, and

age-related sarcopenia (Natarajan et al., 2010). These cells can

be distinguished from myogenic satellite cells by the expression

of PDGFRa, and they arise from a different developmental

lineage than the surrounding muscle (Joe et al., 2010; Uezumi

et al., 2010). Although intramuscular adipocyte accumulation

can disrupt muscle function, undifferentiated FAPs play an

important role in normal physiology. When muscle is damaged,

FAPs respond to local cytokine production by proliferating,



clearing necrotic debris, and supporting myogenesis (Heredia

et al., 2013; Joe et al., 2010). Additionally, of course, muscle is

a direct and indirect target of several circulating adipokines

that regulate metabolism, and conversely, myokines like irisin

can affect adipose function.

There is also an interesting and well-established relationship

between adipocytes and the lymphatic system (Rosen, 2002).

Lymph nodes are invariably encased by fat; interestingly, these

depots do not change in size with fasting and feeding but instead

respond to immune stimulation, thus acting as privileged

storehouses for the immune system (Pond and Mattacks,

2002). Other complex relationships between adipose tissue

and lymph nodes have been described. For example, adipose

progenitor cells may contribute to the stroma of the node itself,

as cells destined for the adipose lineage can be reprogrammed

into lymphoid organizer cells by lymphotoxin-b (Bénézech

et al., 2012). Additionally, lymphatic fluid itself has a strong

pro-adipogenic effect, which can be demonstrated in dramatic

fashion by the massive proliferation of adipose tissue seen in

chronic lymphedema (Rockson, 2010).

Finally, bone marrow is increasingly being recognized as a

unique depot with important local functions. In children, bone

marrow is filled largely with osteogenic and hematopoietic

precursors, but as we age, the percentage of adipocytes in

marrow rises significantly. Marrow adipocytes tend to be

smaller than those in other depots and to have somewhat

different lipid constituents (Griffith et al., 2009). Interestingly,

although marrow adipocytes are fully capable of lipolysis, they

do not respond to caloric restriction (Bathija et al., 1979; Devlin

et al., 2010), similar to peri-lymphatic adipose depots. In fact,

patients with anorexia nervosa often have increased marrow

fat in the setting of severe adipose wasting in other depots, an

observation corroborated in some, but not all, rodent models

(Fazeli et al., 2013). The marrow adipogenic progenitor cell is

usually considered to be a type of multipotent mesenchymal

stem cell (Pittenger et al., 1999), and there is evidence that

some cell surface markers that characterize adipose progenitor

cells in other depots (e.g., CD24) are not expressed in marrow

stroma (Fazeli et al., 2013). The multipotent nature of the marrow

stromal cell has been put forward as a key factor in the patho-

genesis of osteoporosis; reduced bone mass is believed to

result, in part, from common precursor cells that make the deci-

sion to become fat rather than bone. In fact, the relationship

between marrow fat and bone density is more complex than is

encompassed in this simple paradigm. For example, there are

situations (such as in human puberty) in which one sees

increased marrow fat and bone at the same time. Furthermore,

PPARg agonists promote adipogenesis and inhibit osteogene-

sis in mesenchymal stem cells and have been associated with

increased marrow fat and diminished bone density in some,

but not all, studies (Fazeli et al., 2013). Does bone marrow fat

affect hematopoiesis? One might speculate that the reason

that we store nutrients in marrow would be to provision this

energy-intensive differentiative process. Despite the attractive-

ness of this idea, marrow fat seems to have a negative impact

on hematopoiesis. There is an inverse relationship between

the number of fat cells and the number of hematopoietic precur-

sors, and elimination of marrow fat by genetic or pharmacologic
means enhances the rate of engraftment following radioablation

(Naveiras et al., 2009).

Fat and Cancer: Dancing with the Devil
The ability of adipose tissue to change the behavior of nearby

cells is not restricted to normal cell types, as both mature

adipocytes and adipose progenitor cells affect the growth and

metastasis of cancer cells. There are strong epidemiological

associations between fat mass and the incidence (and mortality)

of a variety of malignancies, including breast, colon, renal,

esophageal, and pancreatic cancer, as well as some lymphomas

and leukemias, and obesity is now considered a major modifi-

able risk factor for cancer (Park et al., 2011). More directly, sur-

gical removal of parametrial fat pads inhibits carcinogenesis in a

UVB-irradiation mouse model (Lu et al., 2012).

Several mechanisms have been proposed for this association,

including the antiapoptotic effects of obesity-associated hyper-

insulinemia, enhanced aromatization of sex steroids (particularly

relevant for breast and endometrial cancer) in adipose tissue,

and the elaboration of paracrine and endocrine factors that

promote either tumorigenesis or angiogenesis directly from

adipocytes and stromal cells within fat pads (Khandekar et al.,

2011; Park et al., 2011). One such factor is endotrophin, a cleav-

age product of collagen type VI, which promotes tumorigenesis

through matrix/stromal interactions (Park and Scherer, 2012).

The enhanced inflammatory milieu of the obese fat pad has

also been associated with tumor growth, likely through the

secretion of cytokines. Inflammatory factors also promote hom-

ing of metastases to adipose depots, which then serve to provi-

sion the cancer cells with the massive amounts of lipid that are

required to support rapid cell division (Nieman et al., 2011).

Based on these data, there has been significant interest in target-

ing the adipocyte for cancer prevention as well as treatment.

How Do Adipocytes Communicate with Other Cell
Types?
Cross-talk between fat cells and their environment is typically

mediated in three ways: nutritional mechanisms, neural

pathways, and via the elaboration of autocrine, paracrine, and

endocrine agents, collectively termed adipokines. Nutritional

mechanisms are the simplest to understand: adipocytes

evolved, in large part, to safely store excess calories during

periods of nutritional affluence and to release them during

periods of nutritional deprivation. These calories come in the

form of free fatty acids, which are liberated by lipolysis during

fasting and are released into the circulation, where they are

utilized by skeletal muscle and other tissues. By enabling these

tissues to switch to a lipid-oxidizing economy during fasting,

glucose is spared for the central nervous system and red blood

cells.

Adipose tissue is richly innervated by both sympathetic and

parasympathetic fibers, with the former driving lipolysis during

fasting and cold exposure and the latter promoting lipid accumu-

lation after feeding (Bartness et al., 2010a; Kreier et al., 2002).

Central neuronal signals also regulate adipose tissue growth

and cellularity in a depot-specific manner (Bowers et al., 2004;

Foster and Bartness, 2006). Neurally mediated communication

is not all one way, however; adipocytes can communicate
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information about nutritional status to the brain via afferent

nerves. The introduction of UCP-1 into white fat, for example,

improves leptin sensitivity in mice, an effect that is lost following

denervation (Yamada et al., 2006). Indeed, some actions of the

adipokines discussed belowmay actually be dependent on stim-

ulation of local nerve endings within the adipose depot and not

solely on systemic distribution via the circulation (Murphy

et al., 2013).

By and large, however, most of the excitement in this area

has come from advances in our understanding of adipokine

biology. Early examples of adipose-derived secreted products

include immunological proteins like the complement factor adip-

sin and TNF-a, but the discovery of leptin was an inflection point

for the field, serving notice that adipocytes are active endocrine

cells, identifying a specific biological cause of obesity (at least in

mice), and giving hope for a rational drug therapy. Though small

amounts may be produced by other tissues in specific contexts

(Considine, 2001; Maymó et al., 2011), the lion’s share of leptin

comes from adipocytes, and serum levels are tightly associated

with fat mass. Many factors regulate leptin expression and

secretion, including nutrients, steroid and thyroid hormones,

and cytokines (Moon et al., 2013). The transcriptional control of

Lep expression is also complex, with C/EBPa and PPARg

playing opposing roles (Hollenberg et al., 1997; Kallen and Lazar,

1996); the transcription factor Fosl2 is also required for the differ-

entiation-dependent expression of Lep in adipocytes (Wrann

et al., 2012).

Leptin exerts its effects via specific receptors in the central

nervous system and in the periphery. An example of the latter

is in the immune system, where leptin promotes inflammation

by enhancing cytokine production, macrophage function, and

the CD4+ T helper response (Carbone et al., 2012). The effects

of leptin to reduce body weight by decreasing food intake and

increasing energy expenditure are clearly centrally mediated,

operating through several hypothalamic nuclei (e.g., the arcuate,

lateral, dorsomedial, and ventromedial nuclei). In addition, there

are leptin receptors in the nucleus of the solitary tract of the

hindbrain and in the ventrotegmental area that may affect dopa-

minergic reward pathways that affect the hedonic experience of

eating and palatability (Leinninger et al., 2009; Myers et al.,

2009). It has also been noted that leptin improves glycemic

control in lipodystrophic animals, an effect that is also centrally

mediated (Asilmaz et al., 2004). The effect of leptin on bone is

complex, but it appears to exert anti-osteogenic effects via a

hypothalamic relay system (primarily affecting the axial skel-

eton), while it may have direct pro-osteogenic effects at appen-

dicular sites (Karsenty, 2006).

The other dominant adipokine is adiponectin, both in terms of

its serum concentration (2–10 ug/ml) and the number of papers

that it has engendered since its discovery in the mid 1990s

(>11,000). Adiponectin expression is highly adipose specific

and is constitutively secreted. It circulates in plasma as trimers,

hexamers, and higher-order structures; these larger complexes

can be difficult to quantify but likely represent the most biologi-

cally active forms of the molecule (Turer and Scherer, 2012).

Two classes of adiponectin receptor have been identified. The

dominant signaling forms are encoded by ADIPOR1 and

ADIPOR2, which are seven-transmembrane receptors with the
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opposite polarity of G-protein-coupled receptors (i.e., the N

terminus is cytoplasmic) (Yamauchi and Kadowaki, 2013). There

is also a nonsignaling receptor called T-cadherin that has none-

theless been shown to be required for some actions of adiponec-

tin (Denzel et al., 2010). One of the more interesting attributes of

adiponectin is that its expression and secretion are diminished in

visceral obesity despite the increased fat mass (Turer et al.,

2011). Although the mechanism underlying this effect is unclear,

it has enabled adiponectin to serve as an excellent biomarker for

insulin resistance and metabolic dysfunction.

Adiponectin receptors are widespread throughout the body,

so it is no surprise that adiponectin affects many tissues and

physiological processes. Many of these effects promote meta-

bolic health, including inducing fatty acid oxidation in liver, sup-

pressing hepatic glucose production, improving b cell function,

and enhancing peripheral insulin sensitivity. Cardiac health is

enhanced by adiponectin both directly (e.g., through the direct

stimulation of cardiomyocyte survival after ischemia/reperfusion

injury) and indirectly (e.g., by improving serum dyslipidemia and

reducing inflammation) (Goldstein et al., 2009). Interestingly, one

might assume that adiponectin might promote weight loss, but

this appears not to be the case. In fact, transgenic overexpres-

sion of adiponectin causes significant fat accumulation, and

when crossed to the ob/ob strain, one obtains the most cor-

pulent rodent model seen to date (Kim et al., 2007). This may

be due partly to increased insulin sensitivity and partly to direct

actions of adiponectin on the hypothalamus to increase food

intake (Kubota et al., 2007).

The strength and breadth of adiponectin effects on meta-

bolism make it an ideal integrator of many different metabolic

signals. For example, it has long been known that elevated tissue

iron stores reduce peripheral insulin sensitivity. When adipocyte

iron levels are high, adiponectin is suppressed, and insulin resis-

tance ensues. Conversely, reductions of tissue or serum iron

cause increased adiponectin and improve glucose tolerance

(Gabrielsen et al., 2012). A similar situation exists for fibroblast

growth factor 21 (FGF21), a secreted protein made by the liver

and other tissues (including fat) with a wide range of beneficial

effects on metabolic function, including weight loss and

improvements in glucose and lipid homeostasis (Iglesias et al.,

2012; Potthoff et al., 2012). FGF21 directly increases the produc-

tion and release of adiponectin by adipose tissue. In the absence

of adiponectin, FGF21 can still reduce body weight but is no

longer capable of improving glucose homeostasis, insulin resis-

tance, hypertriglyceridemia, or hepatic steatosis (Holland et al.,

2013; Lin et al., 2013). Finally, thiazolidinedione (TZD) agonists

of PPARg used clinically to treat type 2 diabetes work, at least

in part, by promoting the synthesis and secretion of adiponectin

(Nawrocki et al., 2006).

Resistin is another small protein identified as an adipokine

linking obesity to insulin resistance in rodents. Resistin expres-

sion is highly specific for white adipose tissue in mice, and it

circulates in higher concentrations in obese animals (Steppan

and Lazar, 2004). Elevated resistin causes insulin resistance

in vitro and in vivo, while reductions have the opposite effect.

This relationship has been harder to demonstrate in humans,

however, in whom resistin appears to be secreted primarily by

circulating monocytes (Savage et al., 2001).



Another group of adipokines that has garnered attention lately

is the lipocalins RBP4 and Lcn2, which are expressed in adipose

tissue, circulate at higher levels in obesity, and have been exten-

sively characterized with respect to their effects on glucose

homeostasis and insulin action. RBP4 is the major vitamin-A-

transporting protein in serum, where it circulates bound to trans-

thyretin, which extends its serum half-life (Campos-Sandoval

et al., 2011). RBP4 is preferentially expressed in visceral adipose

tissue, and serum levels are strongly associated with insulin

resistance in rodents and humans (Graham and Kahn, 2007).

RBP4 has been reported to induce insulin resistance by binding

to the receptor Stra6 (Berry et al., 2013). Others have suggested

that RBP4 induces insulin resistance by activating inflammatory

pathways in macrophages in a retinoid-independent fashion via

a receptor that is not Stra6 (Norseen et al., 2012). Lcn2 is an iron-

trafficking protein produced by a select number of tissues,

including white adipose tissue, in response to inflammation.

Lcn2 causes insulin resistance in cultured adipocytes and hepa-

tocytes (Yan et al., 2007), but the in vivo data are less clear.

Lcn2�/�mice have been reported to be lean and insulin sensitive

(Law et al., 2010), obese and insulin resistant (Guo et al., 2010),

or to have unaltered adiposity and mild insulin sensitivity (Jun

et al., 2011); the source of the discordance is unclear.

Many other adipokines have been identified, with several novel

molecules appearing seemingly every year. Chemerin, omentin,

vaspin, and others are all produced by adipose tissue and exert

metabolic effects (Bremer and Jialal, 2013). Interestingly, the

adipocyte fatty-acid-binding protein aP2 (encoded by the

Fabp4 gene), one of themost highly expressed adipocyte genes,

has recently been shown to be secreted through an exosomal

mechanism. Serum aP2 is elevated in obesity and promotes

hepatic insulin resistance and gluconeogenesis (Cao et al.,

2013). Although most characterized adipokines are peptides,

adipose-derived fatty acid derivatives with signaling properties

have also been described. The earliest of these was mono-

butyrin, which was described as a pro-angiogenic factor (Dob-

son et al., 1990). More recently, palmitoleate was identified as

an important ‘‘lipokine’’ secreted by adipocytes following de

novo lipogenesis, which acts on muscle and liver to protect

against the adverse consequences of dietary lipid ingestion

(Cao et al., 2008). Given the wealth of lipid substrates and modi-

fying enzymes found in adipocytes, it seems likely that additional

‘‘lipokines’’ will be discovered in the near future.

Does BAT have its own set of adipokines? In general, BAT

makes the same factors as WAT, although some, like leptin

and adiponectin, are produced at lower levels (Villarroya et al.,

2013). Conversely, the active form of thyroid hormone, triiodo-

thyronine (T3), is produced in sufficient quantities in BAT to affect

systemic levels due to very high expression of type II 50-deiodi-
nase (encoded by Dio2) (Silva and Larsen, 1985). Speculation

that BAT may produce its own unique repertoire of adipokines

has rested on two observations. First, ablation of BAT has a

much larger effect on systemic metabolism than does deletion

of UCP-1, a result that is not fully consistent with the notion

that all benefits of BAT derive from local uncoupling (Enerbäck

et al., 1997; Hamann et al., 1996; Lowell et al., 1993). Second,

direct transplantation studies have shown that as little as

100mg of BAT can improve bodyweight and glucose homeosta-
sis in obese recipient mice. This latter effect was lost when BAT

from Il6�/� animals was used, suggesting that this factor may

represent a true ‘‘BATokine’’ (Stanford et al., 2013).

Lipid Trafficking inAdipocytes: Can anOldDogTeachUs
New Tricks?
Adipocytes are first and foremost professional lipid-storing cells.

Although this aspect of fat has been studied for decades, several

recent advances have brought additional insight. Though most

of the lipid stored in adipocytes comes from the diet, the fat

cell is fully capable of synthesizing new lipids from carbohy-

drates using de novo lipogenesis (DNL). The two major enzymes

of DNL, fatty acid synthase and acetyl CoA carboxylase, are

abundantly expressed in fat under the control of sterol-

response-element-binding protein 1c (SREBP1c) and carbohy-

drate-response-element-binding protein (ChREBP). Though

SREBP1c is the dominant regulator of DNL in liver, that role

belongs to ChREBP in WAT (Herman et al., 2012; Shimano

et al., 1997). Interestingly, DNL is associated with poor metabolic

outcomes in liver, but the opposite is true in fat. Several genetic

manipulations that increase adipose DNL cause improvements

in insulin sensitivity and glycemic control, whereas loss of

ChREBP has the opposite effect; this may involve changes in

adipokine secretion, increased adipose browning, or some other

mechanism (Herman et al., 2012; Iizuka et al., 2004). Somewhat

paradoxically, caloric restriction actually increases adiposeDNL,

though it is not clear whether this mediates the beneficial effects

of this intervention (Bruss et al., 2010).

Lipolysis is the process that is required for fatty acids to

be liberated from triglyceride so that they can be oxidized locally

or by other organs. Classically, we think of lipolysis as being

driven by b-adrenergic signaling in the adipocyte, but other

inducers (such as TNF-a) exist and may have physiological

relevance (Rydén and Arner, 2007). The lipolytic machinery

consists of at least three major enzymes and associated cofac-

tors. The primary cleavage of triacylglycerol to diacylglycerols is

performed by adipose triglyceride lipase (ATGL), a recently

discovered enzyme whose existence was inferred when genetic

ablation of the well-studied second enzyme in the pathway, hor-

mone-sensitive lipase (HSL), was shown to be dispensable for

lipolysis in vivo. HSL is themajor diglyceride lipase in adipocytes,

and monoglyceride lipase (MGL) completes the process by

generating glycerol and free fatty acids. Together, these three

enzymes account for >90% of the lipolytic activity in the adipo-

cyte (Young and Zechner, 2013). ATGL, in particular, is highly

regulated at both the transcriptional and posttranscriptional

levels, including multiple phosphorylation events and transloca-

tion to the surface of the lipid droplet. It is activated by a protein

cofactor called CGI-58, which is normally bound in an inactive

state by the lipid droplet protein perilipin-1 (Plin1). PKA-depen-

dent phosphorylation of Plin1 releases CGI-58, allowing it to

bind and activate ATGL (Granneman et al., 2009). Conversely,

ATGL is inhibited by a protein called G0S2, though its impor-

tance in vivo is still unclear (Yang et al., 2010).

Insulin is the major physiological suppressor of lipolysis, a

process that becomes impaired in obesity even though insulin

levels are high. Insulin acts in several different ways to block

lipolysis. First, it activates phosphodiesterase 3b (PDE3b) via
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Akt-mediated phosphorylation; this has the effect of reducing

intracellular cAMP levels and blocking PKA activation (Deger-

man et al., 1998; Kitamura et al., 1999). More recently, a non-

canonical pathway has been described in which insulin blocks

activation of PKA selectively on Plin1 through a PI3K-mediated,

Akt-independent pathway (Choi et al., 2010b). Over a slightly

longer timescale, insulin also represses lipolysis by transcrip-

tionally silencing lipase genes via repression of the transcription

factors FoxO1 and IRF4 (Chakrabarti and Kandror, 2009; Eguchi

et al., 2011).

Interestingly, lipolysis is required for the generation of endog-

enous PPARa ligands, as fatty acids imported from the blood

or synthesized endogenously cannot activate this nuclear recep-

tor until they have undergone a cycle of esterification and hy-

drolysis (Haemmerle et al., 2011). Thus, animals lacking ATGL

in adipocytes show deficient fatty acid oxidation and thermo-

genesis in BAT, with the acquisition of a WAT-like phenotype

(Ahmadian et al., 2011). The key point here is that, by generating

specific PPARa ligands, lipolysis is coupled to the downstream

oxidation of freshly released fatty acids.

The lipid droplet itself is now recognized as a highly dynamic

organelle with extraordinary conservation of its protein composi-

tion; more than 200 droplet-associated proteins have been iden-

tified in adipocytes, most of which are also found associatedwith

droplets in other mammalian tissues as well as in lower organ-

isms (Konige et al., 2013). In addition to the perilipins previously

described, other important proteins that are under active inves-

tigation include the CIDE family and various scaffolding proteins

such as cavins and caveolins, virtually all of which have been

linked to lipid handling, insulin sensitivity, and global energy ho-

meostasis.

Adipose Tissue as a Therapeutic Target
Given its central role in metabolic health and disease, it is no

surprise that adipose tissue has become an important therapeu-

tic target. Below, we discuss several strategies bywhich adipose

biology might be exploited for clinical benefit.

TZDs/TZD-like Molecules for Selective PPARg

Activation

TZDs have a variety of beneficial effects in adipose tissue,

including insulin sensitization, induction of browning, and anti-

inflammation. Unfortunately, the clinical utility of TZDs has

been limited by their unfavorable side effect profile, including

fluid retention, osteoporosis, and (possibly) increased risk of

cardiovascular events (Ahmadian et al., 2013). Interest in PPARg

as a therapeutic target was recently revived, however, by the

realization that partial agonists that are not adipogenic can still

act as potent insulin sensitizers. This paradox was resolved by

the demonstration that PPARg can be phosphorylated by

Cdk5 at Ser273 in rodent and human obesity (Choi et al.,

2010a). Phosphorylation at this site changes the pattern of

gene expression driven by PPARg, reducing the expression of

adiponectin and several other genes without affecting most

direct targets. This suggested that PPARg might be selectively

activated by agents that block Cdk5 phosphorylation without

driving ‘‘classical’’ agonism, a prediction that was borne out

when such compounds were used to treat animal models of

insulin resistance without causing fluid retention (Choi et al.,
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2010a; Choi et al., 2011). Furthermore, mice lacking the nuclear

corepressor NCoR in adipose tissue have an improved meta-

bolic profile despite obesity, a phenotype that is consistent

with increased PPARg activity. These animals show reduced

phosphorylation at Ser273, suggesting that a major effect of

NCoR may be to facilitate the phosphorylation of PPARg by

Cdk5 (Li et al., 2011). To date, selective agonists have not

been found that promote browning over other PPARg-depen-

dent actions. However, the recent finding that deacetylation of

PPARg by SirT1 causes browning suggests that selective

modulation of PPARg to promote thermogenesis may be achiev-

able (Qiang et al., 2012). Other posttranslational modifications,

such as SUMOylation, are also able to alter PPARg target selec-

tion and function, opening the door for additional therapeutic ap-

proaches (Shimizu et al., 2006).

Lipectomy

A somewhat simple-minded approach to weight loss is the

surgical removal of excess adipose tissue; perhaps unsurpris-

ingly, liposuction is the most common cosmetic surgical pro-

cedure in the world (http://www.isaps.org). Does cutting out

adipose tissue ameliorate the effects of overnutrition? In rodents,

the removal of visceral fat does improve metabolic parameters,

at least in the short term, whereas removal of subcutaneous fat

has little effect (Gabriely et al., 2002; Shi et al., 2007). This latter

result is seen in humans as well, in whom removal of as much as

20% of total body fat (>40% of subcutaneous fat!) by liposuction

does not improve insulin sensitivity or other risk factors for car-

diovascular disease (Klein et al., 2004). There is some debate

as to whether the lack of efficacy of liposuction reflects depot-

specific differences between visceral and subcutaneous fat or

whether it is because the fundamental problem of energy im-

balance has not been corrected. Certainly, inducing negative

energy balance can improve metabolic dysfunction long before

significant weight loss occurs (Henry et al., 1985). Over the

long-term, however, it is now clear that eliminating fat stores

surgically without correcting energy balance simply causes

regrowth of fat mass at either the site of excision or (more

commonly) other depots. In rodents, this takes place within

weeks to months (Mauer et al., 2001), whereas in humans, the

process can last a year (Hernandez et al., 2011).

Brown Fat Induction

A more elegant approach to reducing body fat might involve

the preferential induction of brown or beige adipocytes, a strat-

egy that did not escape the attention of early investigators.

Based on themetabolic rate of BAT inmice (�300W/kg, approx-

imately two orders of magnitude higher than any other tissue;

Cannon and Nedergaard, 2004), it was calculated that 40–50 g

of BAT could account for 20% of daily energy expenditure (Roth-

well and Stock, 1979), which would be astonishing given current

estimates that there may be upward of 100 g of BAT in a normal

person (van Marken Lichtenbelt et al., 2009). Unfortunately, two

major assumptions underlying this assertion have not been

borne out. First, the mouse calculations for BAT were made

under conditions of maximal activation, which is almost never

the case in thermoneutrality-seeking humans. Second, mamma-

lian energy expenditure is inversely correlated with body size,

such that whole-body BMR is 1–2 W/kg for humans, compared

to 8 W/kg for mice (van Marken Lichtenbelt and Schrauwen,

http://www.isaps.org


2011). Even with these caveats, BAT activity has been predicted

to account for 2.7%–5% of BMR in humans, which could cumu-

latively promote more than 4 kg of fat loss per year (van Marken

Lichtenbelt and Schrauwen, 2011; Virtanen et al., 2009). The

potential benefits of BAT activation extend beyond weight loss,

as BAT consumes significant amounts of lipid and, to a lesser

but still significant extent, glucose (Bartelt et al., 2011; Ouellet

et al., 2012).

There has been interest in promoting uncoupling as a weight

loss strategy since the 1930s, with attention focused on chemi-

cal agents like dinitrophenol. Experience with this approach

has been mixed, with some studies reporting excellent results

and others less sanguine. Side effects, ranging from rash to

cataracts to hyperpyrexia, have been reported, and there have

been fatalities (Colman, 2007; Harper et al., 2001). Presumably,

much of the toxicity of these agents is related to their actions

in non-BAT tissues, such as muscle or the optic lens, and it is

thus unclear whether this experience informs us about the safety

or utility of inducing the development or function of brown adipo-

cytes, which are adapted to high levels of uncoupling.

How could BAT be induced or activated in a medicinal

context? Most of the classical inducers, such as catecholamines

and thyroid hormone, cannot be delivered in excess without

causing significant morbidity. There was intense interest for

some time in developing b3-adrenergic receptor-specific ago-

nists, which increased thermogenesis in some studies. However,

absolute b3 selectivity has proven difficult to achieve; the oral

bioavailability of such compounds is suboptimal, and published

results from early trials have been uninspiring (Arch, 2002). Some

investigators have posited that cold itself could be used as ther-

apy, as one can see significant inductions of BAT activity at tem-

peratures that can be achieved without a cold suit (i.e., 15–19�C/
59–66.2�F) (Chen et al., 2013a; van der Lans et al., 2013; Yone-

shiro et al., 2013). As little as 2 hr a day at 19�C for 6 weeks was

sufficient to reduce fat mass in young, healthy male subjects

(Yoneshiro et al., 2013). Is this feasible in a world where 27%

of global warming is predicted to arise from air conditioners by

2050 (Velders et al., 2012)? In this case, the societal costs may

well outweigh the benefits to the individual.

Thiazolidinediones have been reported to increase the brown-

ing of white fat (Petrovic et al., 2010; Qiang et al., 2012; Teruel

et al., 2003), but TZD use causes weight gain, not weight loss

(Ahmadian et al., 2013). Similarly, developmental regulators

like BMP7 and BMP8b are unlikely pharmaceutical candidates

given the pleiotropy of their actions. FGF21 is being actively

explored as a therapeutic (Woo et al., 2013), although it is unclear

whether its beneficial actions depend on browning. The

natriuretic peptides (or more precisely, inhibitors of neutral

endopeptidase, which degrades ANP and BNP) are interesting

candidates, as they are being developed for hypertension and

heart failure (Nawarskas et al., 2001); unfortunately, blockade

of NEP causes weight gain in mice (Becker et al., 2010). Finally,

cyclooxygenase (COX)-2 mediates some of the effects of

b-adrenergic signaling on brown fat development and function

(Vegiopoulos et al., 2010), and COX-2 inhibition is associated

with weight gain (Fain et al., 2001). Unfortunately, promoting

global prostaglandin synthesis with a COX-2 activator is an unat-

tractive strategy, regardless of any potential effects on body
weight. The a priori uncertainty of these approaches makes it

imperative that we gain a better understanding of the pathways

that promote and inhibit brown/beige adipocyte thermogenesis

in humans so that we can identify an optimal intervention point.

Disruption or Promotion of Adipose Tissue

Angiogenesis: Both or Neither?

The profound growth potential of adipose tissue and its ability

to foster its own blood supply through the elaboration of vascular

growth factors led several investigators to draw analogies to

tumor biology and thus to ask whether angiogenesis inhibitors

might promote weight loss. Early studies with these agents in

high-fat-fed and genetically obese mice looked promising, with

significant reductions in body fat achieved by administration of

anti-angiogenic agents originally developed for cancer therapy

(Bråkenhielm et al., 2004; Rupnick et al., 2002). Importantly,

these treatments caused the metabolic profiles of the mice to

improve, with reduced insulin resistance and hyperlipidemia.

This was recapitulated in a more specific fashion by coupling a

pro-apoptotic peptide to a peptide ligand for a protein called

prohibitin, which is expressed preferentially on intra-adipose

endothelial cells. This strategy reduces body weight and im-

proves glucose homeostasis in both rodents and nonhuman

primates (Barnhart et al., 2011; Kim et al., 2012; Kolonin et al.,

2004).

The picture becomes significantly murkier, however, when

VEGF expression is manipulated, with paradoxical results seen

in most studies (Cao, 2013). Although difficult to reconcile all of

the data, it does appear that timing is an important issue, with

different results seen when angiogenesis is affected early in

overnutrition or after obesity has already been established.

Furthermore, these angiogenic agents have effects beyond the

vasculature, with effects on brown fat thermogenesis, macro-

phage polarization, and food intake, all of which can complicate

the interpretation of their metabolic actions (Elias et al., 2013;

Kim et al., 2010; Sun et al., 2012).

Adipokine-Based Therapy

When leptin was first discovered, it was obvious to propose

using it to treat obesity in human patients. It was soon discov-

ered that obese people are not, in fact, leptin deficient. Rather,

they have elevated levels due to leptin resistance, a complex

phenomenon involving altered transport across the blood-brain

barrier as well as intracellular mechanisms that reduce signaling

efficiency (Myers et al., 2012). In principle, this did not neces-

sarily preclude the successful use of recombinant leptin as an

anti-obesity agent; after all, insulin-resistant type 2 diabetics

are often treatedwith supraphysiological doses of insulin. Never-

theless, the results of single-agent leptin administration have not

been encouraging (Heymsfield et al., 1999; Mittendorfer et al.,

2011). More recent trials have focused on co-administration of

leptin with other agents that promote weight loss, with the idea

that reducing leptin resistance would enhance leptin action.

Some of these agents, like amylin, metformin, FGF21, rimona-

bant, and exendin-4, have shown promise, although their effects

have been generally less impressive in humans than in rodents

(Boustany-Kari et al., 2011; Kim et al., 2006; Muller et al., 2012;

Ravussin et al., 2009; Roth et al., 2008). An emerging idea under

study is a role for leptin in maintaining weight loss achieved

through other means. The only currently approved indication
Cell 156, January 16, 2014 ª2014 Elsevier Inc. 35



for leptin is on a compassionate use basis in rare cases of

congenital leptin deficiency (Montague et al., 1997), on which it

is quite efficacious. Patients with congenital lipodystrophy also

have access to leptin therapy on the same basis. At present, lep-

tin is not approved for the much larger group of patients with

acquired (such as HIV-associated) lipodystrophy, but trials are

ongoing. Other indications for leptin are being explored, such

as hypothalamic amenorrhea, which is also a hypoleptinemic

state (Chou et al., 2011).

The broad beneficial actions of adiponectin make it an attrac-

tive target for therapeutic manipulation, although its propensity

to cause weight gain when provided in excess needs to be

addressed. Unfortunately, direct administration of adiponectin

is made difficult by the requirement for proper posttranslational

modification to enablemultimerization, combinedwith an unusu-

ally short serum half-life and high baseline levels. TZDs promote

the synthesis and secretion of adiponectin from fat, and other

adiponectin secretagogues have been identified and are being

assessed for clinical efficacy (Shetty et al., 2009). Finally, small

molecule activators of the ADIPOR1/R2 receptors might be of

significant utility (Okada-Iwabu et al., 2013).

Blocking the effects of negative adipokines is also a worth-

while strategy. Fenretinide reduces serum RBP4 levels by dis-

rupting its interaction with transthyretin and thus promoting

excretion through the urine (Campos-Sandoval et al., 2011).

Accordingly, fenretinide was tested for its ability to improve insu-

lin sensitivity and glucose tolerance in obese rodents and was

found to be efficacious (Yang et al., 2005). However, fenretinide

achieves this by promoting weight loss, an effect that is still

present in RBP4 null animals (Preitner et al., 2009). Another

adipokine that may be amenable to blockade is aP2. A small-

molecule inhibitor of this fatty-acid-binding protein was found

to ameliorate both insulin resistance and atherosclerosis in

rodent models; the fact that these proteins evolved to bind small

lipophilic ligandsmakes them particularly promising drug targets

(Furuhashi and Hotamisligil, 2008).

Conclusions
The obesity epidemic has put a spotlight on the adipocyte, and

new information emerges with each passing week. We have

endeavored to illustrate several key themes. (1) Adipocytes

can be divided into different classes, generally denoted as white,

brown, and beige. These types share numerous attributes but

also differ in critical ways that include aspects of their gene

expression profile and secretome, their developmental origin,

and their therapeutic potential. (2) The developmental pathways

that give rise to mature adipocytes are still being worked out but

likely include a perivascular origin with various transition forms

that can be identified using cell surface markers. In some phys-

iological situations, there may be interconversion of adipose

types or even between adipocytes and nonadipocytes, suggest-

ing remarkable plasticity. (3) The composition of adipose tissue

changes dramatically during overnutrition, involving alterations

in adipocyte size and number, immune cell type and number,

and extracellular matrix. Ultimately, these events predispose

to the metabolic dysfunction seen in obesity. (4) Adipose tissue

performs a wide array of functions that depend upon physical

location and physiological status. (5) Communication between
36 Cell 156, January 16, 2014 ª2014 Elsevier Inc.
adipocytes and extra-adipose tissues can occur via multiple

mechanisms but most commonly through the elaboration of

a growing array of secreted factors collectively termed adipo-

kines. (6) The complexity of adipose tissue presents numerous

challenges but also several opportunities for therapeutic inter-

vention.

We have learned an extraordinary amount in a short time, and

it seems certain that we will discover muchmore about this high-

ly complex and relatively unloved cell in the very near future.
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